Monosacáridos y Ósidos: Estructura, Clasificación y Funciones

Monosacáridos

Los monosacáridos son sustancias blancas, de sabor dulce, cristalizables y solubles en agua. Se oxidan fácilmente, transformándose en ácidos, por lo que se dice que poseen poder reductor (cuando ellos se oxidan, reducen a otra molécula).

Los monosacáridos son moléculas sencillas que responden a la fórmula general (CH2O)n. Están formados por 3, 4, 5, 6 ó 7 átomos de carbono. Químicamente son polialcoholes, es decir, cadenas de carbono con un grupo -OH en cada carbono, en las que un carbono forma un grupo aldehído o un grupo cetona.

Se clasifican atendiendo al grupo funcional (aldehído o cetona) en aldosas, con grupo aldehído, y cetosas, con grupo cetónico.

Cuando aparecen carbonos asimétricos, presentan distintos tipos de isomería.

Algunos de ellos pueden presentar su estructura ciclada.

Los monosacáridos se nombran atendiendo al número de carbonos que presenta la molécula:

Ejemplos de monosacáridos

Ejemplos de monosacáridos relevantes en el metabolismo son la glucosa, la fructosa, la ribosa o la desoxirribosa, entre otros muchos.

La Glucosa

Es un monosacárido de 6 carbonos que se utiliza para construir otras moléculas, como almidón, celulosa, lactosa o sacarosa. Se encuentra libre en la sangre y sirve como fuente de energía para las células. Se llama también Dextrosa o azúcar de la uva.

La Fructosa

La fructosa es un monosacárido de 6 carbonos que se encuentra libre en las frutas o unida a la glucosa, formando la sacarosa. Recibe también el nombre de Levulosa. Se puede transformar en glucosa en las células del hígado. Se encuentra también en el líquido seminal, como nutriente para los espermatozoides.

La Ribosa

Es un monosacárido de 5 carbonos. Es un componente estructural de nucleótidos, como el ATP. Forma parte de la estructura de los nucleótidos que forman el ARN.

Imagen


Ósidos

Los Ósidos son Glúcidos formados por varios monosacáridos. La unión de monosacáridos se realiza a través de un enlace especial que libera una molécula de agua y que se llama enlace O-glucosídico, ya que un monosacárido se une al siguiente a través de un Oxígeno.

Clasificación de los Ósidos

Se llaman Holósidos a los ósidos formados por varios monosacáridos.

Se denominan Heterósidos a los ósidos formados por monosacáridos y otras moléculas distintas a los Glúcidos, como pueden ser lípidos, que forman glucolípidos, o prótidos, que pueden formar glucoproteínas, entre otros.

Los Holósidos se clasifican en Oligosacáridos y en Polisacáridos.

Oligosacáridos

Los oligosacáridos son Glúcidos formados por un número pequeño de monosacáridos, entre 2 y 10. Se denominan Disacáridos, si están compuestos por dos monosacáridos, Trisacáridos, si están compuestos por tres monosacáridos, Tetrasacáridos, si están compuestos por cuatro monosacáridos y así sucesivamente.

Los disacáridos se forman por la unión de dos monosacáridos, mediante un enlace O-glucosídico. El enlace se forma entre el carbono que forma el enlace hemiacetálico del primer monosacárido y un carbono del segundo monosacárido.

Para nombrar el disacárido formado se debe indicar las moléculas que lo constituyen y el número de los carbonos implicados en el enlace. Como el nombre químico suele ser muy largo, se utiliza más el nombre más común.

Lactosa

β-D-Galactopiranosil-(1→4)-β-D-Glucopiranosa

Enlace formado por una galactosa y una glucosa, ambas cicladas, con el carbono anomérico en posición β. Intervienen en el enlace el carbono 1 de la galactosa y el carbono 4 de la glucosa.

Es un disacárido que se encuentra libre en la Naturaleza. Es el azúcar que posee la leche.

Posee poder reductor.

Sacarosa

α-D-Glucopiranosil-(1→2)-β-D-Fructofuranósido

Enlace formado por una glucosa ciclada, con el carbono anomérico en posición α, y una fructosa ciclada, con el carbono anomérico en posición β. Intervienen en el enlace el carbono 1 de la glucosa y el carbono 2 de la fructosa.

Es un disacárido que se encuentra libre en la Naturaleza. Se obtiene de la caña de azúcar y de la remolacha. Es el azúcar común.

No posee poder reductor. Es debido a que no tiene ningún carbono anomérico libre. El carbono anomérico de la glucosa es el carbono 1 y el carbono anomérico de la fructosa es el carbono 2. Ambos están formando el enlace glucosídico, por lo que no pueden intervenir en la reacción Fehling.

La terminación -ósido hace referencia a que no tiene ese carácter reductor.

Polisacáridos

Los polisacáridos son polímeros de monosacáridos, unidos mediante enlace O-glucosídico. Cuando los monosacáridos que forman la molécula son todos iguales, el polisacárido formado se llama Homopolisacárido. Cuando los monosacáridos que forman la molécula son distintos entre sí, es decir, de más de un tipo, el polisacárido formado se llama heteropolisacárido.

Los polisacáridos no tienen sabor dulce, no cristalizan y no tienen poder reductor. Su importancia biológica reside en que pueden servir como reservas energéticas o pueden conferir estructura al ser vivo que los tiene. La función que cumplan vendrá determinada por el tipo de enlace que se establezca entre los monosacáridos formadores.

Los polisacáridos más abundantes en la Naturaleza son el almidón, el glucógeno, la celulosa y la quitina.

Almidón

Aparece en células vegetales. Es un homopolisacárido con función de reserva energética, formado por dos moléculas, que son polímeros de glucosa, la amilosa y la amilopectina. La amilosa está formada por glucosas unidas por enlace α(1→4). La amilopectina está formada por glucosas unidas por enlaces α(1→4) y (1→6). Estos enlaces (1→6) originan ramificaciones, que se repiten en intervalos de secuencias desiguales de monosacáridos. La amilosa adquiere una estructura helicoidal y la amilopectina recubre a la amilosa.

Glucógeno

Es un homopolisacárido con función de reserva energética que aparece en animales y hongos. Se acumula en el tejido muscular esquelético y en el hígado. Está formado por glucosas unidas por enlace α(1→4) y presenta ramificaciones formadas por enlaces (1→6).

Celulosa

Es un homopolisacárido formado por glucosas unidas por enlace β(1→4). Es típico de paredes celulares vegetales, aunque también la pueden tener otros seres, incluso animales. Su importancia biológica reside en que otorga resistencia y dureza. Confiere estructura al tejido que la contiene. Las cadenas de celulosa se unen entre sí, mediante puentes de Hidrógeno, formando fibras más complejas y más resistentes.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *